
Safe Motion Planning under Partial Observability
with an Optimal Deterministic Planner

Jeffrey Kane Johnson1

Abstract— This paper derives a principled framework for
efficiently and safely navigating partially observable multi-
agent systems using an optimal deterministic planner. This
is accomplished by decoupling the navigation problem into
independent collision avoidance and guidance problems and
by providing mechanisms for solving both efficiently. While the
framework does forgo global optimality in order to compute
solutions, we argue that such optimality is unattainable in
practice due to intractability, so nothing is actually sacrificed.
An example solution is demonstrated for a novel graph traversal
problem using a deterministic, single-agent velocity profile
planner in a partially observable, multi-agent setting.

SUPPLEMENTAL MATERIAL

Video demonstrations of the framework can be seen here:
https://jeffreykanejohnson.com/publications/#pst.

I. INTRODUCTION

Robotics, fundamentally, is the problem of how machines
engage in meaningful real-world interactions. These interac-
tions require reasoning at varying levels of complexity, and as
machines have become capable of more complex reasoning,
robots have become capable of more complex interactions.
This can be seen in industries such as mining, health care,
and automated driving [1].

While such applications are impressive, there are still basic
types of interaction problems that remain difficult. One such
problem is how to navigate efficiently in an unstructured
non-adversarial multi-agent system. This is the kind of
problem pedestrians face when navigating crowded sidewalks
or drivers face when navigating crowded roadways. While
specific variants of this problem have received much attention
from researchers, e.g. [2], [3], [4], general solutions that are
also robust and efficient remain elusive. To help address
this, we build on an idea with a long history in robotics
motion planning: that under certain conditions multi-agent
navigation can be achieved by decomposing the problem into
separate collision avoidance and guidance sub-problems.

This paper builds on results from [5] to derive a framework
that provides a rigorous methodology for performing the
collision avoidance/guidance decomposition in dynamically
constrained, non-adversarial multi-agent systems. The de-
composition relies on the ability of the agents to identify
when and how interaction effects in multi-agent systems can
be factored out of the navigation problem. Once a problem
has been factored, the decomposition allows robust and
efficient solutions to be found. As a simple demonstration,
a partially observable multi-agent path network traversal

1Jeff is Principal at Mapless AI, Inc., jeff@mapless.ai

Fig. 1: A Path Network Traversal problem: The agents at the
bottom attempt to move to the top while the agents at the
right attempt to move to the left. This problem is used to
demonstrate the proposed framework.

(PNT) problem is defined and solved under the framework
using a deterministic, single-agent planner. The conclusion
discusses future work applying this framework to larger,
complex, and safety-critical systems.

II. RELATED WORK

In decentralized control theory person-by-person solution
techniques [6] are those in which each agent assumes arbi-
trary control strategies for all other agents and optimizes its
own actions according to the assumed strategies. Person-by-
person strategies provide no guarantees of global optimal-
ity, but can be computationally efficient. A complementary
technique, the designer’s approach [7], views the control
problem from the perspective of a system designer who
attempts to solve the decentralized problem in a centralized
fashion by computing control laws for all agents in open-
loop. By using an open-loop strategy, the designer’s approach
attempts to find solutions that converge on some kind of
global optimality without incurring the computational cost
of accounting for future observations.

The designer’s approach is related to decision pro-
cess problem models known variously as open-loop
techniques [8], unobservable Markov Decision Processes
(MDPs) [9], or non-observable MDPs (NOMDPs) [10].
These problem models are partially observable MDPs that
have only a single ‘null’ observation. The null observation
function reduces the problem complexity significantly from
the general case, which is NEXPNP-Complete [11]. However,
lacking the perfect observation information of an MDP,
the NOMDP is still NP-Complete [12]. A treatment of
the types of partially observable systems most suitable to
open-loop strategies is given in [13], where it is noted that

https://is.gd/owkMdK
mailto:jeff@mapless.ai

problems that admit global/local action space decomposition
are particularly well-suited. From an empirical standpoint,
[8] showed that open-loop techniques can be effective even
in large-scale/high-dimensional robotics control problems.

All of this is to say that an established approach for
dealing with multi-agent control problems is to modify the
problem such that dimensions relating to agent interaction
can be factored out. In fact, some sort of factorization must
occur; the problem complexity is too high otherwise. In
one form or another, factorization underlies many successful
methods, such as the behavior fusion architecture [14],
the subsumption architecture [15], the Dynamic Window
Approach [16], CIRCA [17], ORCA [18], and the ROAD
system [19]. However, these approaches often require very
specific assumptions about the world, e.g., finite states, first-
order dynamics, or that future trajectories can be accurately
predicted. These baked-in requirements inherently limit the
applicability of the approaches to specific types of problems
and, as shown empirically in [20], unexpected collisions can
result when such methods are applied to other problem types.
Our approach addresses this limitation by only requiring that
certain properties of the state space be computable without
specifying how they should be computed.

III. DEFINITIONS & PROPERTIES

This section reviews properties and definitions used to
derive the presented framework. See [5] for more details
including derivations and proofs.

Definition 1. The agent state Apxq is a state representation
containing both the dynamic state of an agent A and the
volume of workspace it occupies at state x.

Definition 2. For a state x and path P , the stopping path
(SP) is the minimal set of agent states that A must occupy
while reaching a reference velocity1 from x along P .

Definition 3. For a given agent state let P be the set of all
feasible paths. The stopping region (SR) is the disjoint union
of all SPs for P P P .

Definition 4. The actions of two agents are said to require
coordination when the safety of either agent’s action se-
quence is not independent of the other’s.

Definition 5. A contingency plan is a control sequence that
an agent can execute that guarantees no collisions.

Definition 6. Behavioral interactions are factorizable if con-
trol can maintain contingencies independently of interaction
effects and without coordination.

Property 1. SP Disjointness is the property that a system is
guaranteed to be factorizable if all agents have one or more
SPs that are disjoint from the SRs of all other agents.

IV. PROBLEM DEFINITION

This section defines the specific multi-agent navigation
problem that our framework will address. The problem

1The reference velocity is often zero, hence the name “stopping” path.

is defined as a variant of the reciprocal n-body collision
avoidance problem given in [18].

Problem 1. Let A be a set of agents navigating a shared
space and assume that collision is never initially inevitable.
Assume each agent can observe the instantaneous dynamic
state of the environment. Assume each agent has knowledge
of the physical dynamic properties of the environment and
of other agents, but that each agent actuates according to
a unique decision process. Each agent may assume with
certainty that other agents will prefer both to avoid collision
and to avoid causing collision, but that otherwise the decision
processes of other agents are not fully observable except
through coordination. When |A| ą 2, how can an agent
choose a control with the guarantee that it satisfies the first
priority below while attempting to satisfy the second?:

1) Ensure that it is possible to remain collision free.
2) Make progress toward a desired goal state.

In this paper, the solution to Problem 1 exploits Property 1
to decompose the problem into independent sub-problems for
each of the objectives. As shown in [5], this decomposition is
safe as long as agent interactions do not require coordination
for collision avoidance. When coordination is not required,
each agent can apply a person-by-person control strategy,
which allows collision avoidance and guidance to be solved
independently. The policies assumed for other agents must
be self-preserving, but can otherwise be defined however
is expedient and without regard for non-collision interac-
tions. In fact, Property 1 also allows for agents to interact
selectively with each other. Such a system could then use
a decentralized joint-planning framework as in [21]. Such
systems are outside the scope of this paper, but are an area
of promising future work and may be highly relevant for
automated vehicles with V2V capabilities.

A. Interaction Factorization

A basic result of multi-agent systems is that if all agents at
all times possess at least one contingency plan, collision can
always be avoided. Thus, if control can maintain contingen-
cies independently of interaction effects, then the interactions
can effectively be factored out of the control problem. This
notion of interaction factorization rests on two assumptions:
that the system consists of non-adversarial entities, and that
agents in the system have reasonable understandings of the
system’s dynamics.

The intuition behind Property 1 is that when contingency
plans are SPs, they are independent of interactions and
computable strictly from system dynamics. As such, the
system as a whole is capable of remaining collision free
through the independent maintenance of SP Disjointness by
the agents. This process is what is referred to in this work as
interaction factorization. The following sections will derive
a navigation framework built around this factorization.

V. THE FRAMEWORK

Our framework consists of a guidance controller, a local
collision avoidance controller, and a fusion module. The

guidance controller is part of the “assumed strategies” of
the person-by-person control approach, so its structure is
arbitrary and unimportant to the framework. We therefore
only define the local controller and fusion module, leaving
definition of the guidance controller to framework users.

A. Solution Strategy

In a pure optimization-based approach, an agent would
solve the sub-goals of Problem 1 jointly with a stochastic
optimal controller. But, as noted, such formulations are not
generally tractable. However, an agent can solve Problem 1
by formulating the sub-goals as two independent tasks and
fusing them in a way that maintains Property 1:

1) A guidance controller computes a control term ud that
directs an agent to some goal

2) A local collision avoidance controller maintains a safe
control set Usafe that satisfies Property 1

The fusion module takes ud as input and computes an
output control u as follows:

1) If Usafe ‰ H, take arg minuPUsafe µpu, u
dq

2) Else, compute u to restore Property 1
A similar solution methodology is given in [22]. This

decomposition is what allows optimal deterministic planners
to be used to solve partially observable problems: The
collision avoidance sub-problem is a strictly deterministic
contingency planning problem, so a deterministic planner can
solve it. As with any non-globally optimal strategy, deadlocks
may occur. Resolution strategies vary by application, but
future work will examine some general strategies.

Under this framework, the fusion module is responsible for
priority blending and for maintaining Property 1. The local
controller computes interaction factorizations, which requires
the ability to compute SRs. While SR computation can be
highly domain dependent, certain aspects of the computation
are universally required. The following sections describe
nominal routines that can be tailored to individual problem
instances.

The local controller is defined in Algorithm 1. Line 3
provides a check against problem assumptions: if the dis-
jointness condition is ever violated, then some assumption,
either of the environment or interactions of other agents,
has been broken and collision may become imminent. In
this case, a mitigation strategy should be employed because
collision avoidance can no longer be guaranteed.

B. Computing Stopping Regions

Let ComputeSR be a function that computes SRs. As-
sume there exist functions to compute feasible paths for an
agent, and to compute the SP given each of the feasible
paths. The resulting swept volumes are combined into a
composite set, the SR, using a disjoint union operation. Note
that ComputeSR is where the framework can use an optimal
deterministic planner.

In principle, the set of feasible paths will be infinite in size,
and each path may also be infinite in length. Thus, most prac-
tical applications will require some kind of discreteness and
finiteness approximations to ensure computability. Luckily,

Algorithm 1 For an agent state Apxq and goal-directed
control ud, compute u‹ that allows the agent to remain
collision free with respect to obstacles O over horizon T
while minimizing µpu, udq.

1: procedure LOCALCONTROL(Apxq, ud,O, T)
2: Φ Ð SPDisjointControlspApxq,O, T q
3: if Φ is H then
4: Compute mitigation control u‹

5: else
6: U Ð InitialControlspΦq
7: u‹ Ð arg minuPU µpu, u

dq

8: end if
9: return u‹

10: end procedure

SP1

SP2

SP3

SP4

A1 A2

Fig. 2: Illustration of the counterexample used in the proof
of Lemma 1. Agents A1 and A2 have mutually disjoint SPs
available, but no SPs are disjoint from the other’s SR.

as the next section will show, these types of approximations
need not break Property 1.

C. Computing SP Disjointness

To compute SP Disjointness for the whole system, a
solving algorithm needs to collect all indices of SPs, compute
those that intersect the other agent’s SRs, and return the
complement of that set. This can be accomplished with a
relative complement operation. The DisjointSPs function,
defined in Algorithm 2, performs this operation.

Algorithm 2 Find the SPs P SR that are disjoint from SR’.

1: procedure DISJOINTSPS(SR, SR1)
2: I Ð index set from SR
3: QÐ SRX SR1

4: IQ Ð index set from Q
5: return IzIQ
6: end procedure

It is important to note that the relative complement op-
eration with respect to the SRs of other agents is required
for correctness. Lemma 1 shows that it is not sufficient to
simply check for the existence of a mutually disjoint subset
of SPs between agents.

!SR

SP1 SP2

SP*1 SP*2

^

Fig. 3: This figure illustrates the conservative SP Disjointness
computation described by Lemma 2. A conservative SR
boundary δxSR it shown for a disc agent, along with stopping
path subset that is made up of SP1 and SP2. Conservative
stopping paths SP‹1 (dashed boundary) and SP‹2 (dotted
boundary) are defined such that SP‹1 Y SP‹2 covers δxSR.

Lemma 1. The existence of mutually disjoint SPs does not
imply that the system is factorizable.

Proof. Proof proceeds by counterexample. Consider two
agents A1 and A2, where A1 has SP1 and SP2 in its SR, and
A2 has SP3 and SP4 in its SR. If SP1 only intersects SP3

and SP2 only intersects SP4, then the stopping paths SP1

and SP4, and SP2 and SP3 are mutually disjoint between
the agents, but neither agent’s stopping paths are disjoint
of the other’s SR. Thus, no SP is guaranteed collision free
without coordination, so by Definition 6 the system is not
factorizable. See Fig. 2.

To compute the full interaction factorization, implemen-
tations can exploit the fact that Property 1 does not require
exactness. Lemma 2 shows that the property can be guaran-
teed so long as the SR boundary, δSR, can be conservatively
approximated with respect to one or more of its SPs.

Lemma 2. For a stopping region SR1, let δxSR1 be a
conservative approximation to the boundary of SR1. Let
SR11 Ă SR1 be a subset of SPs. For each SPP SR11 let SP‹ be
SP with its boundary expanded such that the volume enclosed
by δxSR1 is covered by all SP‹ (as in Fig. 3). Let SR‹1 be the
stopping region composed of all SP‹. For any other SR2,
if SP disjointness holds between SR‹1 and SR2, then it must
hold between SR1 and SR2.

Proof. Assume SR1, SR‹1, and SR2 as defined in the lemma.
Let Q “ SR1 X SR2 and Q1 “ SR‹1 X SR2. Because SR‹1
is constructed conservatively, then it must be that Q Ď Q1,
and, by definition, SP1 Ď SP‹1. It follows directly that if there
exists SP‹1 P SR‹1 such that SP‹1 R Q

1, then there must exist
SP1 P SR1 such that SP1 R Q. Thus, if Property 1 is satisfied
for Q1, it must also be for Q.

Discreteness and finiteness assumptions among the SPs
are therefore safe to make provided both conservative SPs
and a conservative approximation to δSR can be computed.

This result is a powerful tool for constructing efficient
implementations.

D. Preserving SP Disjointness over Time

Most practical systems will compute controls with respect
to intervals of time rather than points in time. This means that
in order to maintain Property 1 over time, the framework also
needs to compute disjointness with respect to time horizons.
This horizon-based disjointness problem is formulated below,
followed by a nominal algorithmic solution.

Problem 2. Under the constraints and conditions of Prob-
lem 1, assume an agent A has a control set U . Given the
system state at time t, what is the subset of controls U‹ Ď U
for A that preserves Property 1 up to a time horizon T ?

Problem 2 is not defined with respect to agent decision
processes, so a solution must account for any decision agents
may make within T . To do this, we note that the magnitude
of the state change due to decision processes is bounded by
the magnitude of the state change possible due to dynamics.
Thus, in theory, computing disjointness with respect to the
union of SRs over all states that may be occupied within
T suffices to ensure Property 1. In practice, however, this
is generally infeasible because it can require computing
the union of an infinite number of swept volumes. As an
alternative, it is usually possible to efficiently approximate
just the boundary of this infinite union, especially when T
is small, and ensure disjointness from it. It is important to
note that computing this boundary does not require accurate
predictions of future interactions; it only requires bounded
estimates of physical dynamics. Algorithm 3 presents an
approximation algorithm for a single object with an obvious
extension to multiple objects.

Algorithm 3 For agent state Apxq and object O, find control
sequences Φ for A that maintain Property 1 over horizon T .
Let pδp¨q be an SR boundary approximation function.

1: procedure SPDISJOINTCONTROLS(Apxq, O, T)
2: Φ Ð ControlSequencespApxq, T q
3: for φ P Φ do
4: for u P φ do
5: A1pxq Ð AgentStateAtpApxq, uiq
6: SRÐ ComputeSRpA1pxqq
7: if @SP P SR, SP X pδpOq is not H then
8: EraseFrompφ,Φq
9: break

10: end if
11: end for
12: end for
13: return Φ
14: end procedure

VI. IMPLEMENTATION & EVALUATION

This section introduces the path network traversal problem
used to evaluate the presented framework. The evaluation

metric is Completion Time Variance (CTV), which is a mea-
sure of the variance in completion time due to perturbations
in problem conditions. The CTV metric is defined first,
followed by the PNT problem and its solution under our
framework.

A. Completion time variance and failure rate

To define CTV, let Γ be some problem scenario that is
parameterized by a vector θ, and let fpΓ, θq be a simulation
function that computes the time it takes an agent to reach
a goal state in scenario Γ under parameter vector θ. Let
a sequence Θ1, . . . ,Θn be i.i.d. random parameter vectors
and let Ω‹ “ tθ1, . . . , θnu be a sample of size n drawn from
Θ1, . . . ,Θn. For n ą 1, CTV is equal to the unbiased sample
variance estimate of fpΓ, θq applied across Ω‹.

B. The path network traversal problem

The PNT problem is a partially observable multi-agent
navigation problem. As noted in §II, optimal solutions to
these problems are computationally intractable. It is defined
below as a variant of Problem 1.

Problem 3. For a reciprocal n-body collision avoidance
problem, let A be a set of agents navigating a graph G “

pV,Eq. Assume all agents are initialized at some v P V and
that collision is never initially inevitable. Assume r 9smin, 9smaxs

and r:smin, :smaxs are bounds on speed and acceleration. As-
sume an agent at 9smax can traverse at most emax edges and can
stop within at most emin edges. The problem for a given agent
is to navigate from a start vertex to a goal vertex without
collision within a time horizon T .

To solve Problem 3, the following problem-specific ver-
sions of the nominal routines are needed. For brevity, we
omit the precise details of the functions and only summarize
how they are computed.

1) ComputeSR: As noted in §V-B, it is this function
that can utilize a deterministic planner. To solve the PNT
problem, we will use the optimal speed profile planner
from [23]. ComputeSR needs the set of feasible paths and
the minimum swept volumes along those paths; together
these pieces of information are the SPs, which define the
SR. The information can be computed as follows:

‚ Feasible Paths: G may have infinite feasible paths, but
only SPs are needed. Since the maximum length of these
paths is fully determined by 9smax, :smax, and Apxq, this
function need only find all paths of such length. The
length is computed by the speed profile planner, and
paths are found by simple graph search over a number
of edges determined by emax.

‚ Minimum Swept Path: The agent models are discs
and the control sequences φi are always :smin, so the
swept paths are 2D capsules [24] that are easily com-
puted given the stopping speed profile computed by the
planner, the path, 9smin, Apxq, and φi.

TABLE I: CTV for H “ 10s and T “ 0.05s.
In these trials only agent initial positions are perturbed.
Average CPU time and trial duration are tc and ts.

σ2
position 0.22 0.42 0.62 0.82 1.02

CTV 1.070 0.743 0.650 0.586 0.563
ts (ms) 95.81 92.85 90.88 88.52 85.94
tc (s) 6.67 6.56 6.46 6.46 6.26

TABLE II: CTV for H “ 10s and T “ 0.05s.
In these trials only agent speeds are perturbed.
Average CPU time and trial duration are tc and ts.

σ2
9s 0.22 0.42 0.62 0.82 1.02

CTV 1.332 0.832 0.283 0.445 0.526
ts (ms) 106.2 117.7 107.5 102.8 103.4
tc (s) 7.32 7.99 7.05 6.80 6.98

2) pδp¨q: This is the SR boundary approximation function.
Because T is short, we simplify the operation by discarding
the time dimension of SR computation. Both the number
and maximum length of paths A can traverse within T are
determined by the agent’s dynamics and the speed profile
planner. Thus, the true set of SRs is contained by a union of
capsules that are each the union of the swept volumes along
each path with the SR computed from the end of the path.

3) SPDisjointControls: Once the SR approximations
are computed, they are mapped in polynomial time [23] to
obstacles in the planning space used by our deterministic
planner, and the planner computes collision free control sets.

4) LocalControl: This method can now be implemented
directly as specified in Algorithm 1.

C. Results & Analysis

This section provides results of computing CTV for a
single agent in a PNT problem defined on a graph G, which
is a 6ˆ6 grid with 12 agents that attempt to traverse from one
side to the other in a straight line. All agents are unit discs
with reference points at their centers (Fig. 1). All information
about G and dynamic constraints is stored in Γ. Mean
parameter vector µθ is initialized with agent positions along
the outside edges of G oriented toward the opposite side
with initial speeds and accelerations zero. Agent guidance
controllers are random walks over r0, :smaxs. Each agent’s
assumed strategy for all others is simple constant velocity.
The sample count n for all trials is 100. For all agents
H “ 10, r 9smin, 9smaxs “ r0, 10s, r:smin, 9smaxs “ r´4, 4s.

Two types of trials were conducted: one in which only
the initial conditions were randomized, and another in which
online speed estimates were additionally noisy. Results for
the first are summarized in Table I and the second in Table II.

TABLE III: Empirical running time growth.

Objects 6 8 10 12 Growth

ts (ms) 27.85 42.23 69.66 106.2 Opn2q

In Table I, the CTV trends down toward „0.6 then levels
off. We hypothesize that this is because µθ positions the
objects in a regular array along the outer edges of G, which
can lead to traffic jams. However, as σposition increases, the
objects become more evenly distributed, which evens out
traffic flow, reducing expected completion times. This be-
havior indicates that the expected completion time is directly
affected by traffic density and that the algorithm is capable of
negotiating dense traffic at the expense of completion time.

For the trials in Table II, there is less of a clear trend
in CTV, which can be expected because of the persistent
state uncertainty in these trials. Interestingly, average com-
pletion time and CTV do not differ greatly from those in
Table I. The increased uncertainty caused agents to engage
in more conservative turn-taking behavior, which allowed
traffic to clear without jamming. Note that these behavioral
interactions were emergent, which indicates that the proposed
framework has inherent robustness properties.

Table III shows the growth of running time per simulation
run as a function of object count. The simulation used
state observation uncertainty σ 9s “ 0.2. The data indicate
that, despite the partial observability, complexity growth is
polynomial in the number of agents. This is to be expected,
as the framework itself is polynomial in the complexity of
the deterministic planner, which is itself polynomial.

VII. CONCLUSIONS & FUTURE WORK

This paper derived a framework that enables efficient
navigation in partially observable multi-agent domains. The
framework builds on previous results in a general way
to enable application to a wide variety of problems and
scenarios while maintaining guarantees on tractability and
collision avoidance. A sample problem was presented and
problem-specific routines were derived under the framework
to demonstrate its use. The solution was demonstrated to
be computationally efficient despite working in a partially
observable environment. While the sample solution is rela-
tively simple, the framework is designed for application to
general mobile navigation in unstructured environments, such
as vehicle automation, and we are currently working to apply
this framework to automotive active safety systems.

REFERENCES

[1] G. Mester, “Applications of Mobile Robots,” April 2006.
[2] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard,

“Autonomous robot navigation in highly populated pedestrian zones,”
J. Field Robotics, vol. 32, no. 4, pp. 565–589, 2015. [Online].
Available: http://dx.doi.org/10.1002/rob.21534

[3] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation,” in
Proceedings of Robotics: Science and Systems, Sydney, Australia, July
2012.

[4] P. Trautman and A. Krause, “Unfreezing the Robot: Navigation in
Dense, Interacting Crowds,” in Proc. IEEE/RSJ Int. Conf. on Intel.
Robots and Systems (IROS), 2010.

[5] J. K. Johnson, “On the relationship between dynamics and
complexity in multi-agent collision avoidance,” Autonomous Robots,
vol. 42, no. 7, pp. 1389–1404, Oct 2018. [Online]. Available:
https://doi.org/10.1007/s10514-018-9743-4

[6] R. Radner, “Team Decision Problems,” Ann. Math. Statist.,
vol. 33, no. 3, pp. 857–881, Sept 1962. [Online]. Available:
http://dx.doi.org/10.1214/aoms/1177704455

[7] H. S. Witsenhausen, “A Standard Form for Sequential Stochastic
Control,” Mathematical Systems Theory, vol. 7, no. 1, pp. 5–11,
1973. [Online]. Available: http://dx.doi.org/10.1007/BF01824800

[8] A. Weinstein and M. L. Littman, “Open-loop Planning in
Large-scale Stochastic Domains,” in Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, ser. AAAI’13.
AAAI Press, 2013, pp. 1436–1442. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2891460.2891661

[9] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender,
“Complexity of finite-horizon markov decision process problems,”
J. ACM, vol. 47, no. 4, pp. 681–720, 2000. [Online]. Available:
http://doi.acm.org/10.1145/347476.347480

[10] C. Boutilier, T. L. Dean, and S. Hanks, “Decision-Theoretic Planning:
Structural Assumptions and Computational Leverage,” J. Artif.
Intell. Res. (JAIR), vol. 11, pp. 1–94, 1999. [Online]. Available:
http://dx.doi.org/10.1613/jair.575

[11] J. Goldsmith and M. Mundhenk, “Competition Adds Complexity,” in
Advances in Neural Information Processing Systems 20, Proceedings
of the Twenty-First Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007, pp. 561–568. [Online]. Available: http://papers.nips.cc/
paper/3163-competition-adds-complexity

[12] C. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Mathematics of Operations Research, vol. 12,
no. 3, pp. 441–450, Aug 1987.

[13] C.-H. Yu, J. Chuang, B. Gerkey, G. J. Gordon, and A. Ng, “Open-loop
plans in multi-robot POMDPs,” Stanford University, Tech. Rep., 2005.

[14] D. W. Payton, J. K. Rosenblatt, and D. M. Keirsey, “Plan
guided reaction,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 20, no. 6, pp. 1370–1382, 1990. [Online]. Available: https:
//doi.org/10.1109/21.61207

[15] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE J. Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.
[Online]. Available: https://doi.org/10.1109/JRA.1986.1087032

[16] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robot. Automat. Mag., vol. 4, no. 1, pp.
23–33, 1997. [Online]. Available: https://doi.org/10.1109/100.580977

[17] D. J. Musliner, E. H. Durfee, and K. G. Shin, “CIRCA: a cooperative
intelligent real-time control architecture,” IEEE Trans. Systems, Man,
and Cybernetics, vol. 23, no. 6, pp. 1561–1574, 1993. [Online].
Available: https://doi.org/10.1109/21.257754

[18] J. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha,
“Reciprocal n-Body Collision Avoidance,” in Robotics Research
- The 14th International Symposium, ISRR, August 31–September
3, Lucerne, Switzerland, 2009, pp. 3–19. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-19457-3 1

[19] C. Liu and M. Tomizuka, “Enabling safe freeway driving for
automated vehicles,” in 2016 American Control Conference, ACC
2016, Boston, MA, USA, July 6-8, 2016, 2016, pp. 3461–3467.
[Online]. Available: https://doi.org/10.1109/ACC.2016.7525449

[20] J. L. Wilkerson, J. Bobinchak, M. Culp, J. Clark, T. Halpin-Chan,
K. Estabridis, and G. Hewer, “Two-Dimensional Distributed Velocity
Collision Avoidance,” Physics Division, Research and Intelligence
Department, Naval Air Warfare Center Weapons Division, China Lake,
CA 93555-6100, Tech. Rep. NAWCWD TP 8786, November 2014.
[Online]. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/a598520.pdf

[21] K. E. Bekris, D. K. Grady, M. Moll, and L. E. Kavraki, “Safe
distributed motion coordination for second-order systems with
different planning cycles,” I. J. Robotic Res., vol. 31, no. 2,
pp. 129–150, 2012. [Online]. Available: http://dx.doi.org/10.1177/
0278364911430420

[22] A. Mahajan and M. Mannan, “Decentralized stochastic control,”
Annals OR, vol. 241, no. 1-2, pp. 109–126, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10479-014-1652-0

[23] J. Johnson and K. Hauser, “Optimal longitudinal control planning with
moving obstacles,” in 2013 IEEE Intelligent Vehicles Symposium (IV),
Gold Coast City, Australia, June 23-26, 2013, 2013, pp. 605–611.
[Online]. Available: http://dx.doi.org/10.1109/IVS.2013.6629533

[24] E. W. Weisstein, “Capsule. From MathWorld—A Wolfram Web
Resource,” 2019, last visited on 2019-09-07. [Online]. Available:
http://mathworld.wolfram.com/Capsule.html

http://dx.doi.org/10.1002/rob.21534
https://doi.org/10.1007/s10514-018-9743-4
http://dx.doi.org/10.1214/aoms/1177704455
http://dx.doi.org/10.1007/BF01824800
http://dl.acm.org/citation.cfm?id=2891460.2891661
http://dl.acm.org/citation.cfm?id=2891460.2891661
http://doi.acm.org/10.1145/347476.347480
http://dx.doi.org/10.1613/jair.575
http://papers.nips.cc/paper/3163-competition-adds-complexity
http://papers.nips.cc/paper/3163-competition-adds-complexity
https://doi.org/10.1109/21.61207
https://doi.org/10.1109/21.61207
https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/21.257754
http://dx.doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1109/ACC.2016.7525449
http://www.dtic.mil/dtic/tr/fulltext/u2/a598520.pdf
http://dx.doi.org/10.1177/0278364911430420
http://dx.doi.org/10.1177/0278364911430420
http://dx.doi.org/10.1007/s10479-014-1652-0
http://dx.doi.org/10.1109/IVS.2013.6629533
http://mathworld.wolfram.com/Capsule.html

	Introduction
	Related Work
	Definitions & Properties
	Problem Definition
	Interaction Factorization

	The Framework
	Solution Strategy
	Computing Stopping Regions
	Computing SP Disjointness
	Preserving SP Disjointness over Time

	Implementation & Evaluation
	Completion time variance and failure rate
	The path network traversal problem
	ComputeSR
	()
	SPDisjointControls
	LocalControl

	Results & Analysis

	Conclusions & Future Work
	References

