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Abstract— A reciprocal dance occurs when two mobile agents
attempt to pass each other but incompatible interaction models
result in repeated attempts to take mutually blocking actions.
Such a situation often results in deadlock, but in systems with
significant inertial constraints, it can result in collision. This
paper presents this colliding variant of the reciprocal dance,
how it arises, and a mitigation strategy that can improve safety
without sacrificing flexibility. A demonstration is provided in
the context of automotive active safety.

SUPPLEMENTAL MATERIALS

Data sets and a demonstration video are available at:
https://jeffreykanejohnson.com/publications/#crd.

I. INTRODUCTION

A familiar problem for people walking through crowded
areas is the a phenomenon where two people are unable to
pass each other even if sufficient space for passage exists.
This happens when incompatible interaction models result
in attempts to take mutually blocking actions. The repeated
selection of incompatible actions results in an oscillating
deadlock that we refer to as a “Reciprocal Dance.”

For pedestrians, a reciprocal dance is typically just a
nuisance. But for agents with inertial constraints, a reciprocal
dance can lead to collision with severe, or even fatal,
consequences. We will show that a simple mitigation strategy
can help reduce the severity of dangerous reciprocal dance
situations or avoid them entirely.

We choose to mitigate rather than solve the problem for
the simple reason that an exact solution is not realistically
feasible. As the next section discusses, any exact solution
will be intractable and therefore not computable. Following
that, the paper will address the colliding variant of the
reciprocal dance, how it arises, our mitigation strategy, and
two examples in the context of automotive active safety.

II. BACKGROUND

The problem of motion planning for multiple agents
following non-fixed trajectories is generally framed in terms
of sequential decision making. These problems can often be
efficiently solved in centralized cases through formulation
as a type of Markov decision process (MDP), which belongs
to complexity class P [1]. Decentralized problems present
a different set of challenges. It was shown in [2] that for
cooperative agents (i.e., agents that share a reward function)
this class of problems is at least complete for NEXP in both
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(a) Bird’s eye view (b) Front camera view

Fig. 1: The vehicle (left pane, bottom) drives into stationary
traffic, relying on the safety system to modulate throttle.

(a) Bird’s eye view (b) Front camera view

Fig. 2: The vehicle (left pane, between white and blue
vehicles) navigates moving traffic, relying on the safety
system to modulate steering and throttle.

the jointly fully observable (DEC-MDP) and jointly partially
observable (DEC-POMDP) cases. It was shown in [3] that
the partially observable stochastic game (POSG), which is
the non-cooperative version of this problem (i.e., the problem
in which agents do not share a reward function), is complete
for NEXPNP. There is little chance of computing exact
solutions for anything but toy problems in these complex-
ity classes [4], which is unfortunate because formulations
like the POSG provide realistic models of many real-world
scenarios, such as vehicle traffic.

Thus, problem complexity makes dealing with multi-agent
systems in an exact way almost impossible. But it gets worse:
even approximations are often intractable if any guarantee is
required of how close to correct the approximation is [5].
This effectively forces the use of loose approximations or
heuristics in order to compute solutions, which is why we
have chosen to pursue a mitigation strategy rather than an
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exact solution. A metaheuristic useful for deriving such ap-
proximate solutions comes from decentralized control theory
in the form of person-by-person solution techniques [6], [7].
In these, each agent assumes arbitrary control strategies for
all other agents and optimizes its own actions according to
the assumed strategies. These techniques provide no global
optimality guarantees, but they can be made safe and compu-
tationally efficient. Dynamic Virtual Bumper [8], Dynamic
Window [9], and Velocity Obstacle (VO) [10] approaches,
employ this strategy to great success for low-order systems.
For higher-order systems, the VO representation has been
modified and extended [11], but it becomes more difficult
to account for higher-order constraints in a fundamentally
first-order representation. The Selective Determinism [12]
framework used in this paper is person-by-person approach
similar to the Dynamic Window, but is designed for multi-
agent systems with arbitrary dynamics that allows safety
guarantees to be maintained.

III. FORMALIZING AND MITIGATING THE COLLIDING
RECIPROCAL DANCE PROBLEM

A. Selective Determinism

In many multi-agent navigation problems, it can be as-
sumed that agents are non-adversarial and will prefer self
preservation to goal-directed progress. This assumption can
be exploited to safely factor behavioral interaction effects
out of sequential decision and enable tractable solutions.
Selective Determinism [12] is a framework that formalizes
this process. The following definitions will be used to derive
our mitigation strategy using the framework.

Definition 1. The agent state A(x) is a state representation
containing both the dynamic state of an agent A and the
volume of workspace it occupies at state x.

Definition 2. A stopping path is the minimum space an agent
needs to occupy in order to come to a stop1 along a given
path. Also referred to as a contingency plan. See Figure 3a.

Definition 3. A stopping region is the disjoint union of all
stopping paths defined over the set of all followable paths.
Also referred to as a contingency set. See Figure 3b.

Property 1. Stopping path disjointness is the property that
a system is guaranteed the ability to remain collision free if
all agents have one or more stopping paths that are disjoint
from the stopping regions of all other agents.

Property 1 guarantees the existence of a collision-free con-
tingency plan for all agents, which guarantees that collision
can always be avoided. Selective determinism provides a
mechanism for all agents to maintain this property inde-
pendently, provided that all agents invoke a contingency if
not doing so will lead to the property being violated. As
the name of Property 1 implies, the mechanism involves the
computation of stopping regions and stopping paths.

By definition, stopping regions depend only on agent
dynamics and not interactions or behaviors. Thus, agents can

1In this context “stop” could mean zero relative, or zero absolute, velocity.

(a) Illustration of a stopping
path for a disc agent along a
curved path moving from left to
right.

(b) Illustration of the stopping
region for the disc agent from
(a).

Fig. 3: Illustrations of a stopping path and stopping region for
a moving 2D disc agent with unicycle dynamics following
constant control trajectories.

compute the regions for themselves and others without regard
to the partial observability of decision processes. This makes
it possible for each agent to tractably compute actions that
ensure it maintains at least one collision free stopping path
(i.e., contingency plan), which guarantees that collisions can
always be efficiently avoided.

It is this, rather than policy optimality, that Selective
Determinism uses to ensure safety. Because safety is not
dependent on policy optimality, agents can also trade optimal
interaction models for computationally simpler ones. Though
enabling from a tractability standpoint, this trade-off also
allows certain pathological situations.

B. Reciprocal Dance as Pathological Selective Determinism

In many applications, interactions tend to be simple and in-
compatibilities transient, which means agents with simplified
models generally navigate successfully. But what if interac-
tion models are consistently incompatible? This pathological
case can provide a revised definition of a reciprocal dance:

Definition 4. A Reciprocal Dance is a situation in Selective
Determinism when mutually incompatible interaction models
cause a deadlock of repeated contingency invocation.

C. The Colliding Reciprocal Dance

A reciprocal dance can be colliding if it occurs in a
system where Property 1 is not maintained. Unfortunately,
maintaining this property can sometimes be non-trivial. In
order for it to hold, the boundary of a computed stopping
region must be conservative with respect to the boundary of
the true stopping region. In systems with significant inertial
constraints this can be challenging to guarantee because the
stopping paths sweep out large and complicated volumes that
can be difficult to usefully approximate. However, a simple
mitigation strategy can help significantly.



D. A Mitigation Strategy: Constraint Tightening

The following definitions will be useful for outlining the
mitigation strategy.

Definition 5. A constraint set is a set of position-indexed
constraint functions that define dynamic constraints for feasi-
ble motion at each position along the path for a given agent.

Definition 6. A nominal constraint set is a constraint set
that defines all feasible motion of an agent.

Definition 7. A contingency constraint set is a constraint set
that defines stopping paths.

Definition 8. A constraint set collection is a path-indexed
set of nominal and contingency constraint sets.

As a mitigation strategy, we propose to bias an agent’s
dynamic constraints to those of its current stopping region.
By exploiting the definition of a stopping region, this is
straightforward to do. The agent has some set of paths
available to it as well as a constraint set collection that
defines nominal and contingency constraint sets for those
paths. The stopping region has the same set of paths coupled
with contingency constraint sets that most quickly bring
the agent to a stop. Constraint tightening is the process
of adjusting the bounds of the nominal constraints to be
nearer those of the contingency constraints. This strategy is
effectively a type of adaptive damping that can reduce the
risk of violating Property 1 by reducing the likelihood that
stopping paths are not disjoint.

For the intuition behind the strategy, consider the con-
straints on path position derivatives, which govern how an
agent moves2 along a path. Lowering the bound on any
of these derivatives reduces the amount of kinetic energy
an agent can attain, which reduces the displacement along
the path necessary to stop. For example, consider a point
agent moving along a frictionless curve with the below state
function. The function describes the first time derivative of
arc length position ṡ along the curve with respect to a higher-
order time derivative s(n) and time t:

ṡ
(
s(n), t

)
=

n−3∑
k=0

akt
k +

1

(n− 1)!
s(n)tn−1

This is a simple nth-order integrated control system similar
to the kind used in Frenét-frame motion planning [13]. For
this state function it is clear that for s(n)1 ≤ s(n)2 :

ṡ1

(
s
(n)
1 , t

)
≤ ṡ2

(
s
(n)
2 , t

)
Thus, assuming ṡ1, ṡ2 ≥ 0, if the same deceleration is

applied to both, the arc length displacement needed to reach
zero speed from ṡ1 will be no more than that from ṡ2,
which makes the relationship between stopping path length
and value of s(n) order preserving, or monotonic. This is an

2For simplicity of discussion we assume that agent orientation is deter-
mined by path position, but in general this need not be the case.

intuitive idea that we codify as an assumption for systems
using our mitigation strategy:

Assumption 1. The workspace volume needed to bring a
moving system to rest is monotonically non-decreasing with
respect to how quickly the system is capable of changing its
dynamic state.

We make Assumption 1 explicit to avoid the need to
define the mitigation strategy with respect to a specific
motion model or deal with pathological cases where it neither
describes nor reasonably approximates a system.

Lemma 1 now derives the relationship between stopping
region volume and constraint tightening.

Lemma 1. For path set P and nominal and contingency
constraint set collections Cn and Cc, let C? be a tightened
constraint set collection. For any path Pi ∈ P and agent
state A(x), let u? be a control generated with respect to C?
and un a control generated with respect to Cn. Let SRn be
the stopping region that results from applying un to A(x)
and let SR? be the stopping region for u?. IfW(·) is function
that computes workspace volumes of stopping regions, then
W(SR?) ≤ W(SRn).

Proof. Trivially, if un = u?, then W(SR?) = W(SRn).
Otherwise, by definition of constraint tightening, the magni-
tude of state change due to u? will not be greater than that
due to un. Under Assumption 1, it follows from Definition 3
that W(SR?) ≤ W(SRn).

Ideally, we would like the workspace volume to be smaller
than it otherwise would have been. Unfortunately, this can’t
be guaranteed in general because controls can saturate (e.g.
ṡ1 = ṡ2 for u1 > u2) or the stopping regions can have
arbitrary self-intersections. For example, a sphere spinning
in place would have a stopping region workspace volume
exactly equal to its own volume, so it would be impossible
for the volume of the region to ever be smaller. In many
applications, however, constraint bounds are more strongly
correlated to workspace stopping volume. Consider the stop-
ping region shown in Figure 3b: any reduction in stopping
path length directly correlates to smaller workspace volume
for the stopping region.

Constraint tightening can slow, or even reverse, the growth
of the true stopping region volume proportional to the degree
of tightening. In practice, it is quite useful to set the degree
of tightening adaptively as some function of proximity.
In this work, we define proximity as the minimum time
tc before a contingency may need to invoked. We find a
temporal proximity simpler to implement and to lead to more
consistent and intuitive behavior.

We perform tightening by computing a scaling factor γ ∈
[0, 1] that scales from the contingency bound at 0 to the
nominal bound at 1:

c? = (1− γ)cc + γcn

Note that this scaling relies on another assumption:
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(a) The plot shows R plotted for sampled values of B, where
the plot shifts from the x-axis (more conservative) to the y-axis
(less conservative) as B approaches 10.
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(b) The plot shows R plotted for sampled values of ν, where
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the plot crosses the origin.

Fig. 4: The effects of adjusting parameter values B and ν.

Assumption 2. A safe and feasible control can be computed
with respect to every c? ∈ [cc, cn].

Maintaining and verifying Assumption 2 is highly model
dependent and can be tricky if feasible constraint regions
are not simply connected or if contingency sets are not
contained within nominal sets. Future work will investigate
formal methods for handling Assumption 2.

The scaling factor γ is computed in part using a general-
ized logistic function, or Richard’s curve, R:

γ (tc) =

{
0 tc ≤ 0

max (0, R (tc)) tc > 0

We partially specify the parameters of R such that it maps
to [−1, 1]:

R (tc) =
2

(1 + e−Btc)
1/ν
− 1

This leaves parameters B ∈ [0,∞) and ν ∈ (0,∞) to
use for adjusting function shape as in Figure 4. We use the
shape of the function to tune system behavior and allow for
problem-specific and scenario-specific adaptivity: B tunes
how quickly R moves between 0 and 1, with lower values
being more conservative (i.e., gradual), and ν adjusts where
growth occurs on the curve. For completeness, note that

limiting behaviors of R can capture the no mitigation and
pure mitigation cases. For ν = 1:

lim
B→0+

R = 0 (1)

lim
B→∞+

R = 1 (2)

In Limit 1, γ is always 0, which is equivalent to always
applying full mitigation, i.e., always invoking a contingency.
In Limit 2, γ is 1 until tc ≤ 0, which is equivalent to
disabling mitigation, i.e., never activating a contingency until
absolutely required. Under our mitigation strategy, even if
the stopping region approximation is not conservative, it
can be argued that the expected occurrence of disjointness
violations is likely to be lower by virtue of the true stopping
region volume growing less. Future work will formalize this
argument.

IV. DEMONSTRATION:
AUTOMOTIVE ACTIVE SAFETY SYSTEMS

Selective determinism decouples the navigation task into
independent collision avoidance and guidance tasks. In an au-
tomobile, the collision avoidance task could be implemented
as an active safety system and the guidance task assigned to a
human driver. Because of vehicle inertial constraints, such a
system would be at high risk for colliding reciprocal dances
and thus is ideal for demonstrating our mitigation strategy.

We use the CARLA simulator [14] to implement a col-
lision avoidance system on a human-guided vehicle. We
conduct two demonstrations, a simple longitudinal trial that
yields easy to interpret results, and a joint lateral/longitudinal
trial to show behavior in more complex scenarios.

A. Longitudinal Active Safety

In these trials we have the human command the vehicle at
full throttle into a stationary cyclist as shown in Figure 1. The
intent with this scenario is to emulate a driver asleep at the
wheel or distracted by a cell phone. For collision avoidance,
we approximate vehicle motion with a constant acceleration
model, which is simpler than the PhysX [15] model used by
the simulator. We set the model deceleration to 90% of peak
achievable simulation deceleration. This means the vehicle
will typically slow more quickly than the collision avoidance
system predicts. While this should result in conservative
behavior, we nevertheless expect that the discrepancy in
vehicle models will result in colliding reciprocal dance
situations, even for this very simple scenario.

We compare three mitigation strategies:
1) Constraint Tightening: Nominal constraints are

proximity-biased to contingency constraints.
2) Conservative Deceleration: The simplified motion

model minimum is set to 80% of peak achievable.
3) None: The simplified motion model is used as-is.
Figure 6 shows speed profiles of the vehicle for each

strategy, and Figure 5 shows computed throttle commands.
The throttle oscillation in Figure 5 corresponds to the speed
oscillation in Figure 6 toward the ends of the profiles.
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Fig. 5: Comparison of the guidance control (Human, blue)
and collision avoidance controls (System, red) over time for
Strategy 1 (top) and Strategy 2 (bottom). As a visual aid,
the area between the curves is shaded. The reciprocal dance
behavior is clear in the plots as the vehicle oscillates fre-
quently between invoking and not invoking max deceleration
contingency controls (and note that Strategy 1 significantly
dampens the effect). All controls are in [−1, 1]. The red
portion at the beginning of each indicates the vehicle idling
and waiting for guidance input.
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Fig. 6: Vehicle speed as a function of path position. The
cyclist is located at approximately position 225m. Only the
portions of the profiles are shown where interaction effects
begin to emerge; the prior portions are identical to each other.

These oscillations are due to the guidance signal disregarding
interaction effects and the collision avoidance system repeat-
edly invoking contingencies. This is classic reciprocal dance
behavior.

Strategy 1 permits the vehicle to maintain a higher speed
along a greater extent of the path than Strategy 2 until
approximately position 200m, when it becomes more conser-
vative. As the vehicle nears the cyclist, Strategy 1 keeps the
vehicle slow and safely distant while Strategy 2 maintains
relatively high speed until close proximity, only then to
invoke significant deceleration. This demonstrates the utility
of the proposed strategy: the adaptivity permits the vehicle
greater dynamic range when it is safe, and more conservative
dynamic range when needed. Finally, note that Strategy 3
exhibits a sharp speed decline at the end of the plot. This
is caused by collision with the cyclist. In the absence of a
mitigation strategy, the simple motion model resulted in a
colliding reciprocal dance.

B. Joint Lateral and Longitudinal Active Safety

In these trials, we have the human command the vehicle at
full throttle through moving traffic as shown in Figure 2. The
intent with this scenario, like the first, is to emulate an inat-
tentive or incapacitated driver. We adopt the same simplified
longitudinal motion model in addition to a simplified steering
model similar to that shown in Figure 3b. In this case it is not
as straightforward to directly compare mitigation strategies
due to the extra control dimension and the interactivity of the
environment. Instead, we show how large a role the collision
avoidance system plays in keeping the vehicle safe. Over
multiple trials we observe that only those with the mitigation
strategy active were able to consistently avoid collision.

Figure 7 shows how the collision avoidance system modi-
fies the human guidance input in order to maintain safety. In
the plots, the blue curve shows the human-provided guidance
command that is taken as input to the system, and the red
curve shows the control command that is output by the
system to the vehicle. The large deviation of the red curves
from the blue demonstrates that the collision avoidance
system is doing a significant amount of work to keep the
vehicle safe.

V. CONCLUSIONS & FUTURE WORK

The reciprocal dance problem is a common problem
in mobile robotics systems that can also be dangerous in
systems with inertial constraints. While exact solutions for
avoiding the dance altogether are theoretically possible, we
argue that no such solution is practical due to computa-
tional complexity. However, by formulating the problem in
a principled way, we have derived a principled approach to
mitigating it. The proposed mitigation strategy is beneficial
over more naı̈ve approaches because it provides adaptive
behavior in order to maintain both safety and flexibility,
and, from an implementation standpoint, can be relatively
simple to use. The mitigation strategy was demonstrated in
two scenarios, a longitudinal-only scenario and a joint lateral
and longitudinal scenario.
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Fig. 7: Comparison of the guidance control (Human, blue)
and collision avoidance controls (System, red) over time for
the joint control demonstration. The area between the curves
is shaded. All controls are in [−1, 1]. The red portions at the
beginning indicate the vehicle waiting for guidance input.

Future work will further explore the verification and
maintenance of Assumption 2 and additional argumentation
that the mitigation strategy serves to reduce likelihood of
collision. For the latter we believe the work in [16] can
serve as a useful starting point. Also of critical importance
is how to perform empirical verification of our system when
interacting with intelligent agents in the physical world. This
will allow us to quantify behavior on standard automotive test
scenarios such as those described by NHTSA [17] and Euro
NCAP [18]. We are also working to develop rigorous testing
and engineering processes so that this system, and others
like it, can be brought into conformance with industry safety
standards such as UL 4600 [19] and ISO/PAS 21448 [20]
that cover systems with autonomous capabilities.
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