
Optimal Longitudinal Control Planning with Moving Obstacles

Jeff Johnson and Kris Hauser

Abstract— At intersections and in merging traffic, intelligent
road vehicles must solve challenging optimal control problems
in real-time to navigate reliably around moving obstacles. We
present a complete planner that computes collision-free, optimal
longitudinal control sequences (acceleration and braking) using
a novel visibility graph approach that analytically computes the
reachable subset of path-velocity-time space. We demonstrate
that our method plans over an order of magnitude faster than
previous approaches, making it scalable and fast enough (tenths
of a second on a PC) to be called repeatedly on-line. We
demonstrate applications to autonomous driving and vehicle
collision warning systems with many moving obstacles.

I. INTRODUCTION
The Federal Highway Administration in the United States

notes that the frequency of automobile collisions is directly
related to the number of conflict points [1], which are points
in a vehicle’s path that are crossed by the paths of obstacles,
such as pedestrians, bicyclists, and other vehicles. Complex
urban intersections may involve dozens of conflict points and
require an intelligent vehicle to simultaneously avoid lead-
ing/merging vehicles, cross-traffic, and pedestrians. While
specialized collision avoidance techniques have addressed
specific conflict types, such as following behavior [2], merg-
ing [3], and cross-traffic [4], there is little work on techniques
that address heterogeneous conflict types.

To address this problem we present a planner that extends
an analytical approach previously developed for negotiating
cross-traffic [4]. Given a desired vehicle path and estimates
of future obstacle behavior, our planner computes a visibility
graph that represents the set of all possible path/velocity/time
(PVT) states that are reachable via a collision-free longi-
tudinal control sequence. The optimal control sequence is
extracted directly from this graph (Fig. 1).

We present two technical contributions beyond our prior
work. The first is an improved method for computing the PT
obstacles, which represent the set of colliding states in the
path-time plane. Our prior paper approximated PT obstacles
as axis-aligned rectangles, which works well for cross-traffic
but is a poor approximation for leading and merging vehicles.
Instead, the new approach computes an arbitrarily close
polygonal approximation to the true PT obstacle, and the
approximation can be tuned to trade off between speed and
accuracy. The second is an extension allowing the planner
to handle the diagonal edges that emerge from our new PT
obstacle construction. This substantial extension allows our
method to incorporate vehicle following into planning.

The planner now handles arbitrary vehicle paths, polyg-
onal vehicle and obstacle models, and arbitrary velocity

Jeff Johnson and Kris Hauser are with the School of Informatics and
Computing, Indiana University {jj56,hauserk}@indiana.edu

Merge 2 Merge 4

0 100 200 300 400 500
0

10

20

30

40

50

Path Position (m)

Ti
m

e
(s

)

Visibility Graph Edge
Time-optimal Trajectory

Fig. 1: Simulation of 20 vehicles merging onto/off of the
driver’s path. Above: the driver (red) passes two of the
merges. Below: Diagonal PT obstacles from the shared
obstacle/driver paths. The supplemental video contains a
simulation of this scenario.

profiles. It also naturally handles uncertainty by “growing”
the obstacles according to confidence bounds on future
behavior. At over an order of magnitude faster than com-
peting approaches, it can handle many moving obstacles
in tenths of a second on a standard PC. We demonstrate
its application to a simulated urban intersection involving
pedestrians, bicyclists, and automobiles, as well as merging
with cross-traffic on a rural highway.

II. RELATED WORK

Navigation among moving obstacles is a challenging prob-
lem with a long history. In one class of problems, the vehicle
has choice over spatial and velocity controls. Unfortunately,
this problem is intractable: in fact, even among static obsta-
cles the general 2D motion planning problem is PSPACE-
hard [5]. In time-varying domains, a popular approach is to
plan conservatively using velocity obstacles [6], [7], which
are sets of velocities that will lead to collision when ob-
stacle velocities are maintained. More recently, randomized
techniques have been used. Kindel, et. al. [8] employed a
variant of Probabilistic Roadmaps [9] with fast replanning to
plan arbitrary trajectories in the presence moving obstacles
and sensor uncertainty. The MIT team [10] for the 2007
DARPA Urban Challenge used a real-time implementation
of Rapidly-exploring Random Trees [11] to plan vehicle
trajectories. Randomized methods achieve tractability but
sacrifice hard guarantees on completeness and optimality,
which can be problematic for road vehicles that must operate
near 100% reliably even in heavily crowded environments.

2013 IEEE Intelligent Vehicles Symposium (IV)
June 23-26, 2013, Gold Coast, Australia

978-1-4673-2754-1/13/$31.00 ©2013 IEEE 605

A second class of problems assumes a structured road
network with only a handful of paths available, and that
the vehicle may track a given path with reasonably high
accuracy [12], [13], [14]. These longitudinal control prob-
lems achieve tractability by decoupling spatial path planning
and velocity control. The Carnegie-Mellon team in the 2007
DARPA Urban Challenge exploited path/velocity decompo-
sition for road lane navigation by computing optimal paths
based on the centerline of the road lanes [15]. Their method
then proposes candidate trajectories along the optimal path
and chooses the best according to various metrics, including
how well they avoid static and dynamic obstacles. Like other
sample-based methods, it cannot guarantee a solution.

Exact methods for the longitudinal control planning prob-
lem include the visibility graph [16] and explicit search over
a discretized state space [17]. Our method is a visibility graph
that addresses the major shortcoming of [16] by incorporat-
ing acceleration bounds. Unlike explicit discretization [17],
our method is analytical and runs in polynomial time, making
it fast enough to be used for real-time replanning. In addition,
the visibility graph construction allows the exact set of
velocity obstacles to be efficiently computed.

III. PROBLEM DEFINITION
The vehicle is assumed to travel along a known path

and to sense objects in its environment and estimate their
intended behavior over a fixed time horizon, e.g., using
vision, radar, or inter-vehicle communication. The planner is
then asked to solve a longitudinal control problem to define
the vehicle’s future trajectory over this horizon (in the case of
an intelligent vehicle) or to deliver a collision warning (for
a driver assistance system). The planner is designed to be
invoked repeatedly in a model predictive control-like scheme
to advance the horizon and respond to changing sensor input.
We define the planner’s assumptions below.

Inputs. Our planner takes as input the robot R’s arc-
length parameterized path PR(p) : [0, pmax] 7→ C, and a list
of n obstacles Oi along with their predicted paths POi(p),
i = 1, . . . , n. All vehicles are modeled as polygons that
translate and rotate as they slide along piecewise linear paths.
We assume the orientation of a vehicle at any position p
along its path is always tangent to the path, and hence its
world-space layout is entirely determined by p. Uncertain
obstacle behavior is handled by specifying an interval of path
positions pi(t) ∈ [p

i
(t), pi(t)] at which obstacle i might lie

at time t (Figs. 2e & 2f). We also make the simplifying
assumption that obstacle behavior is independent of driver
behavior.

Dynamically feasible PVT trajectories. The planner
computes a continuous curve in the path-velocity-time (PVT)
state space, in which states x = (p, v, t) consist of a path
position p ∈ [0, pmax], velocity v, and time t ∈ [0, tmax]. Dy-
namic constraints include velocity and acceleration bounds:

ṗ = v

v ∈ [v, v] : v ≥ 0

v̇ ∈ [a, a] : a < 0 < a

A trajectory x(t) = (p(t), v(t), t) defined over t ∈ [a, b]
that satisfies these conditions for all t ∈ [a, b] is called
dynamically feasible.

PT obstacles. Each obstacle Oi imposes a forbidden
region COi in the PT plane that corresponds to the (p, t)
points that would cause the driver and obstacle geometry to
overlap [17]. In other words, COi = {(p, t) | (TR(p)R ∩
TOi

(pi(t))Oi) 6= ∅} where TR(p) (resp., TOi
(p)) are the

transformations that translate and rotate a vehicle’s polygon
to the driver’s (resp., obstacle’s) path at position p. With
uncertain obstacle behavior we take PT obstacles to be the
union of obstacles over all possible path positions pi(t) ∈
[p
i
(t), pi(t)]. A trajectory x(t) is collision free if (p(t), t) /∈

COi for all i = 1, . . . , n and t ∈ [a, b], and it is feasible if
it is both dynamically feasible and collision free.

Boundary conditions. The planner must generate a path
from the initial state x(0) = (0, v0, 0) where v0 is the
vehicle’s current velocity to one of two goal cases:

1) Successful navigation: p(tend) = pmax and v(tend) ∈
[vgoal, vgoal] for some tend ≤ tmax. We allow a range
of goal velocities to obey bounds on speed limits.

2) Premature stop: p(tmax) < pmax and v(tmax) = 0.
This case can occur when lead vehicles are stopped.

The planner will output the Case 1 solution of minimum time
if one exists, or the Case 2 solution of furthest progress.

IV. PLANNING SYSTEM

The planner consists of two parts. First, it computes an
approximation to the PT obstacles. Then, it builds a visibility
graph in PVT space and constructs the optimal trajectory by
searching the graph.

A. PT Obstacle Construction

It is challenging to compute the boundaries of PT obstacles
exactly because they may be arbitrarily curved. A simple
approximation technique might build a grid in PT space
with resolution τ and test each cell for collision, but this
requires discretization in two dimensions and a cost of
O((tmaxpmax)/τ

2). Instead, our approach discretizes only
the time dimension and analytically computes forbidden
intervals in the path dimension. With a computational cost of
O(tmax/τ) this technique leads to significant savings, and
the approximation approaches the true PT obstacle as τ → 0.

We present the computation for a single obstacle
O. Consider a uniform grid on the time dimension
0, τ, 2τ, . . . , tmax. Our algorithm computes the left and
rightmost extent of COi within each horizontal strip t ∈
[kτ, (k + 1)τ] in the PT plane, resulting in a conservative
forbidden rectangle [ak, bk] × [kτ, (k + 1)τ]. Fig. 2a shows
PT obstacles constructed at progressively finer resolutions.
The rectangles are then wrapped with a polygon to smooth
their jagged edges as shown in Fig. 2b. This procedure is
listed in Algorithm 1 and relies on two key subroutines.

Subroutines. The SweptVolume subroutine computes a
conservative approximation to the world space SW swept
out by the obstacle between times kτ and (k + 1)τ . Let
W and W be the models of O at the minimum and

606

Algorithm 1 BuildPTObstacle(O,PO, τ, tmax, pO, pO)

1: CO ← ∅
2: for t = 0, τ, 2τ, . . . , tmax − τ do
3: SW ← SweptV olume(O,PO, pO(t), pO(t+ τ))
4: [a, b]← ComputeForbiddenInterval(SW , R, PR)
5: CO ← CO ∪ [a, b]× [t, t+ τ]
6: end for
7: return BoundingPolygon(CO)

maximum possible path extents at times kτ and (k + 1)τ
(i.e., W = TO(pO(kτ))O and W = TO(pO((k + 1)τ))O
assuming obstacles move monotonically along their paths).
When W and W are on the same segment of the path PO,
SW = Conv(W,W) where Conv denotes the convex hull
(Fig. 2c). When they lie on adjacent segments, additional
models Wθ1 and Wθ2 are computed at the path segment
junction, oriented at angles θ1 of the previous segment and
θ2 of the next. We must also account for the intermediate
postures of the rotation, because each vertex of O sweeps
out an arc centered at the junction. Tangents of the arc
endpoints are computed for each vertex, and the intersection
point of the tangents is added to a set of points S. We then
let Wθ = Conv(Wθ1 ,S,Wθ2), as in Fig. 2d. SW is then the
union of of Conv(W,Wθ1), Wθ, and Conv(Wθ2 ,W). This
construction generalizes to multiple traversed path segments
in a straightforward manner.

The ComputeForbiddenInterval subroutine computes the
points ak and bk at which the driver R first comes into
contact with a swept world space obstacle SW , and last
leaves contact with SW . At each extremum, it is either the
case that a vertex of R lies on an edge of SW , or that a
vertex of SW lies on an edge of R. A search of all vertex-
edge combinations will then find all such extrema along each
line segment of PR, and ak and bk are output as the minimum
and maximum of these extrema.

The last step of the procedure (Line 7) wraps the forbidden
rectangles with a polygon. This can dramatically reduce the
number of vertices in the PT obstacles, yielding significantly
faster visibility graph construction. During this procedure,
we discard all interior vertices and those vertices whose
incoming and outgoing edges are of the same slope.

Complexity analysis. Let k = tmax/τ be the
number of grid points. Assuming |R| and |O| are
bounded by m, SweptV olume has average case running
time O(m logm|PO|/k), ComputeForbiddenInterval is
O(|PR|m2), and BoundingPolygon is O(k). Overall, com-
plexity is O(|PR|m2k + |PO|m logm).

B. Visibility Graph Planner

The planner now proceeds from the observation that any
time-optimal trajectory will either connect trivially to the
goal, or be tangential to a forbidden region on the PT plane.
Because there will always be a time-optimal trajectory if the
path is traversable, searching among tangential trajectories
is guaranteed to find a solution if one exists. To search

4.5 5 5.5 6 6.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Path Position (m)

Ti
m

e
(s

)

(a) Forbidden region for coarse
(dark) to fine (light) resolutions.

4.5 5 5.5 6 6.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Path Position (m)

Ti
m

e
(s

)

(b) Forbidden regions from Fig. 2a
wrapped in polygons.

2.5 3 3.5 4 4.5

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

World X Position (m)

W
or

ld
 Y

 P
os

iti
on

 (m
)

Wt+τ
Wt

(c) Convex hull (dashed) of W and
W on same path segment.

3 3.5 4 4.5 5

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

World X Position (m)

W
or

ld
 Y

 P
os

iti
on

 (m
)

W
θ

2

W
θ

1

(d) Convex hull (dashed) of Wθ1
and Wθ2 for path segment junction.

3 4 5 6 7 8 9 10
4

5

6

7

8

9

10

11
World Space Obstacle Estimation Under Uncertainty

World X Position (m)

W
or

ld
 Y

 P
os

iti
on

 (m
)

Initial Obstacle Estimate

Estimate after
~50 time steps

Estimate after
~100 time steps

(e) Obstacle estimate growing over
time due to uncertainty.

4.5 5 5.5 6 6.5
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Path Position (m)

Ti
m

e
(s

)

(f) PT obstacle estimates for large
(dark) to small (light) uncertainty.

Fig. 2: Illustrating PT obstacle construction.

tangential trajectories, the planner computes sets of reachable
velocities at each PT obstacle vertex by constructing a
visibility graph. Once all the reachable velocity sets are
computed, they can be traversed backwards towards the
origin to construct a feasible trajectory.

1) Reachable Velocity Sets within Homotopy Channels:
A homotopy channel H is a region in PT space given by
upper and lower bounds l(t) ≤ p(t) ≤ u(t). The mathe-
matical principle behind our approach is that all extremizing
trajectories from one PVT point to another through a channel
are a combination of bang-bang motions in free-space and
portions that are tangent to l(t) and u(t) [18]. In [4] we
proved that the set of reachable velocities from a starting
state x1 = (p1, v1, t1) through a single H and reaching a
goal PT point (pg, tg) is convex. Hence it suffices to find
the velocity-extremizing trajectories in H ending at (pg, tg).

In our prior work with rectangular PT obstacles we
demonstrated that it was sufficient to incrementally propagate
the extreme velocities of free-space trajectories from x1 to
(pg, tg) and each intermediate vertex x2, x3, . . . , xk in H ,
then propagate from x2 to (pg, tg) and x3, . . . , xk, and so
on through. We do not need to compute motions tangent

607

1 2 3 4 5 6

1

2

3

4

5

Path Position (m)

Ti
m

e
(s

)

Fig. 3: Upper and lower feasible trajectories (curves) to the
upper right point, with v0 ∈ [0, 0] and v̇ ∈ [−1.5, 1.5].

to obstacles because such motions would necessarily pass
through a vertex on the boundary of H (or (pg, tg) itself, if
it were to lie on the boundary).

With PT obstacles that are arbitrary polygons, however,
we must not ignore the possibility of optimal motions that
pass tangent to obstacles (Fig. 3). We will now describe how
we extend velocity propagation to consider diagonal edges.

2) Velocity Propagation amongst Diagonal Edges: This
section presents the basic Velocity Interval Propagation (VIP)
subroutine in our planner. Let (p1, t1) and (p2, t2) be two
points in the PT plane (these are typically obstacle vertices),
and V1 be an interval of initial velocities. The output of the
routine is the interval of velocities V2 attainable at (p2, t2) by
feasible trajectories starting at (p1, v1, t1), where v1 ranges
over all V1. We will describe how to compute the maximum
of V2; the minimum is symmetric.

It is a straightforward matter of algebra to compute
velocity-maximizing solution U(t) in the obstacle-free case
analytically; it is a combination of parabolic and linear
segments (see [4] for details). We then perform collision
checking on U(t). There are three cases to handle:

1) If it is collision-free, then it is optimal and VIP outputs
U̇(t2) as the maximum velocity.

2) If it collides with a vertical, horizontal, or negatively
sloping PT obstacle edge, VIP outputs nothing.

3) If it collides with a diagonal edge with positive slope,
VIP performs further processing, described below.

Case 1 is obviously correct. In Case 2 it has been shown
that either there is no feasible trajectory or there is a
velocity-maximizing trajectory that passes through one of the
endpoints of that PT obstacle edge [4]. In this latter case, the
planner will find the correct trajectory by propagating from
(p1, t1) to that vertex and then from that vertex to (p2, t2),
and hence it is safe to discard this particular propagation.

The remaining Case 3 requires further examination be-
cause it may be possible for an optimal trajectory to follow
this diagonal edge tangentially. Hence we need to consider
generating optimal trajectories from points to edges and back
to points. Moreover, it may be possible (although rare) for
the trajectory to touch several diagonal edges, and hence we
must consider any number of edge-to-edge trajectories.

To do so we use a recursive procedure that makes use of
the following subroutines, which construct optimal trajecto-

ries between various primitives in the absence of obstacles:
1) PointToEdge(p1, t1, V1, e): accepts an initial point

(p1, t1) with velocity interval V1 and edge e, and builds
a time-optimal trajectory (p1, t1) → e that terminates
at a point of tangency to e without crossing.

2) EdgeToPoint(e, pe, p2, t2): accepts an initial point pe
along edge e and builds a trajectory e→ (p2, t2) that
maximizes arrival velocity without crossing e.

3) EdgeToEdge(pe1 , e1, e2): accepts an initial point pe1
along edge e1 and builds a trajectory p1 → e2 that
terminates at a point of tangency to e2 without crossing
e1 or e2. The trajectory is constructed such that the
time before e1 is departed is minimized.

The algorithm is given below:.

Algorithm 2 MaximumTerminalVelocity Diagonal(e)
T1 ←MTV P2E(p1, t1, V1, e)
if T1 = ∅, then return NIL
T2 ←MTV E2P (e, F inalPoint(T1), p2, t2)
if T2 = ∅, then return NIL
return Ṫ2(t2)

It calls two subroutines, MTV P2E that recursively com-
putes a time-optimal, feasible trajectory from (p1, t1) to the
diagonal edge e, and MTV E2P that recursively computes
a velocity-maximizing, feasible trajectory from e to (p2, t2).
Both may call a subroutine MTV E2E that recursively
computes a time-optimal, feasible trajectory between two
edges e and e′. Pseudocode for MTV P2E is provided
below. MTV E2E and MTV E2P are very similar.

Algorithm 3 MTV P2E(p1, t1, V1, e): Recursively compute
a time-optimal trajectory from p1 to edge e given initial
velocity range V1.

T1 ← PointToEdge(p1, t1, V1, e)
if T1 = ∅, then return ∅
e′ ← InitialCollidingEdge(T1)
if e′ = NIL, then return T1
T1 ←MTV P2E(p1, t1e

′, V1)
if T1 = ∅, then return ∅
T2 ←MTV E2E(FinalPoint(T1), e, e

′)
if T2 = ∅, then return ∅
return T1 → T2

Fig. 3 shows an instance of the output of VIP with a
diagonal edge defining the maximum terminal velocity.

3) Visibility Graph Construction: Now we present the
method for computing reachable velocities outside of a PT
channel. Although the reachable velocities at a vertex form a
convex set within a single channel, for multiple channels this
set may in fact be disjoint. Note that for n obstacles there are
in general 2n possible channels, which raises the possibility
that the problem is exponentially hard. However, we showed
in [4] that the number of disjoint velocity intervals any PT
point is effectively bounded by a small constant, and hence
a visibility graph can be computed in polynomial time.

608

The visibility graph vertices consist of a vertex represent-
ing the start state, PT obstacle vertices, and a vertex repre-
senting terminal states. Edges store representative trajectories
that define the min and max velocity trajectories between
two vertices. Planning proceeds incrementally by calling VIP
between all pairs of vertices, in sorted order of in increasing
p. Let these vertices be (p0, t0), (p1, t1), . . . , (pN , tN) with
(p0, t0) = (0, 0) the initial state, and let V0 = [v0, v0].
Each vertex (pj , tj) stores a set of reachable velocities Vj ,
represented as a list of zero or more disjoint intervals. The
algorithm is given below:

Algorithm 4 BuildVG: computes the reachable velocities Vi
at each point (pi, ti) and at the goal.

1: for j = 1, . . . , N do
2: for i = 0, . . . , j − 1 do
3: for each disjoint interval [a, b] in Vi do
4: Call Propagate([a, b], i, j)
5: end for
6: end for
7: Vj ← Merge(Sj)
8: for each disjoint interval [a, b] in Vj do
9: Call PropagateGoal([a, b], j)

10: end for
11: end for

The Merge step is crucial to maintaining polynomial-time
complexity; without it, planning would be exponential-time.
During a merge, care must be taken to maintain the homotopy
classes of each convex interval in each Vj ; it is safe to take
the convex hull of intervals arriving at (pj , tj) within the
same homotopy suffix due to the convexity property, but not
otherwise. These implementation details can be found in [4].

Once the visibility graph is computed, a time-optimal
trajectory is recovered by tracking backwards from the goal
vertex. (Note that the graph is a complete representation of
all feasible trajectories, so it may also be possible to optimize
other objective functions like maximum safety.)

4) Complexity Analysis: Complexity is bounded by
BuildVG and depends mainly on the number of PT obstacle
vertices N . BuildVG makes O(cN2) calls to Propagate
where c is the average number of disjoint velocity intervals
at a vertex. For all practical purposes, c is a small constant,
but in highly pathological cases it can be O(N). Propagate
constructs a candidate trajectory in O(1) time and performs
an O(N) collision detection. If a diagonal edge is hit, two or
more additional trajectory generation and collision detection
routines are called. In all, Propagate is O(dN) where d is
the number of diagonal edges hit during the construction. In
practice d is a small constant, but in the worst case it may
be O(N). The resulting complexity is O(cdN3).

C. Empirical Performance

Fig. 5 shows empirical performance of PT obstacle con-
struction and visibility graph construction for a scenario
similar to that in Fig. 4. Results are averages of 10 runs on a
single core of a 2.3GHz PC. In Fig. 5a the planner is run with

20 40 60 80 100 120 140 160 180
0

50

100

150

Grid Points in Obstacle Construction

Ti
m

e
(m

s)

Total Planning Time
Obstacle Construction Time

(a) Running times for obstacle construction and planning for increas-
ingly fine obstacle discretization

20 40 60 80 100 120 140 160 180
20

22

24

26

28

30

Grid Points in Obstacle Construction

Ti
m

e
(s

)

Goal Arrival Time

(b) Trade-off between obstacle discretization and optimality of plan.

0 1 2 3

10-1

101

103

Obstacle Count

Ti
m

e
(m

s)

Planner
A* Search

(c) Comparison against A∗ search in toy scenario. (Note the logarithmic
scale on the time axis).

Fig. 5: Empirical performance

varying levels of discretization in PT obstacle construction,
showing a roughly linear relationship. Fig. 5b shows how
discretization affects the optimal goal arrival time. At coarse
discretizations, narrow homotopy channels are occluded and
the planner goes around them. At finer discretizations, these
channels open up and the planner finds a faster route.

Fig. 5c compares our method to the A∗-based search
method of [17]. Both planners were run on a simple scenario
with zero to three obstacles. Velocity was constrained to be
within [0, 20]m/s and acceleration within [−5, 5]m/s2, and
time was discretized into steps of 0.1s for the search. The
search heuristic is taken as the minimum remaining time to
the goal position in the absence of obstacles. In the worst-
case, the number of nodes A∗ generates is exponential in the
length of the trajectory, making it unsuitable for problems
with long time horizons. On the scenario in Fig. 4 it fails to
terminate after more than a minute.

V. APPLICATIONS

Autonomous Vehicles. We demonstrate the ability of our
planner to handle the complex scenario of Fig. 4a1. We model
a car traveling along on Kirkwood Avenue in Bloomington,
Indiana on stretch of road with many restaurants and pubs.

609

(a)

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Path Position (m)

Ti
m

e
(s

)

1

2

(b)

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Path Position (m)
Ti

m
e

(s
)

5

4

3

7

8

6

(c)

Fig. 4: (a) A complex urban driving scenario involving pedestrians and bicyclists. The car position, pedestrian and bicycle
positions, and their paths are overlaid on the map. (b) PT obstacles of the stage 1 problem leading to the first stop sign,
with the time-optimal trajectory shown in red. (c) PT obstacles of the stage 2 problem leading to the second stop sign.

(a)

0 50 100 150
0

1

2

3

4

5

6

7

8

Path Position (m)

Ti
m

e
(s

)

Predicted Traj.
First/Last Available
Avoidance Traj.Become Inattentive/

Warning Issued

Last Non-IC
State

1

2

(b)

0 50 100 150
0

1

2

3

4

5

6

7

8

Path Position (m)

Ti
m

e
(s

)

Predicted Traj.

First/Last Available
Avoidance Traj.Warning Issued

Last Non-IC
State

2

1

(c)

Fig. 6: Illustration of collision warning. Fig. 6a: The driver (red) is merging onto the southbound lane of a rural highway,
but fails to notice oncoming vehicles (numbered). Fig. 6b: With lead time tr = 2.5s, an ICS is detected within tr after the
driver becomes inattentive and a collision warning is issued. Fig. 6c: The driver (red) accelerates too slowly while merging
and a warning is issued at tr from the first ICS.

Bicyclists often share the road lane and pedestrian traffic is
heavy, both at and away from crosswalks. The problem is
decomposed into two stages: 1) reaching the first stop sign,
then 2) reaching a second stop sign. Acceleration bounds
are [−10, 8]m/s2 and velocity bounds are [0, 13.4]m/s. The
supplemental video contains simulation of the scenario.

Fig. 4b shows the stage 1 trajectory. The car must avoid

1Imagery c©2012 DigitalGlobe, GeoEye, IndianaMap Framework Data,
USDA Farm Service Agency

a bicycle (obstacle 1) moving in front of it. The bicycle
accelerates from an initial stop, causing its PT obstacle to
be curved initially, and then turns off the road after the stop,
so its PT obstacle ends. Near the stop sign the car must avoid
a pedestrian (obstacle 2) that cuts in front of the crosswalk.

Fig. 4c shows the stage 2 trajectory. The car must now
avoid pedestrians in the crosswalk, as well as another bicycle
(obstacle 6) that turns into the car’s lane. The optimal plan
has the car accelerate out in front of the bicycle, then

610

decelerate slightly to avoid a pedestrian (obstacle 7) before
going on to the final position.

Collision warning systems. Our planner can also be
applied to collision warning systems for inattentive drivers.
Suppose such a system can detect driver inattention and
has a reaction time parameter tr sufficient for a driver to
perceive and respond to a warning, but not so long as to
generate unnecessary false positives. Our planner can be
called repeatedly to verify that a feasible trajectory exists,
assuming the driver continues his/her current behavior up to
time tr. If not, then the driver is about to enter an inevitable
collision state (ICS), and a warning is issued.

In order to do so, we first collision check the driver’s
predicted trajectory Tp up to time tr. If a collision is found,
a warning is issued. Otherwise, the planner attempts to find a
feasible trajectory starting from the final state of Tp. If none
is found, a warning is issued.

Consider a rural highway intersection scenario. The driver
attempts to merge south onto State Road 37 in Indiana
(Fig. 6a) after crossing two northbound lanes of traffic. The
driver incorrectly judges the speed of a northbound vehicle
and begins the merge too slowly to cross safely. The planner
detects an ICS within tr and a warning is issued to the
driver at the point marked in Fig. 6b. With the appropriate
indicators the driver would hopefully be able to accelerate
out of the way of the vehicle, or an automated system
might take over and guide the car to safety. In a second
example with different initial conditions (Fig. 6c), the driver
incorrectly judges the speed of the southbound vehicle and
attempts to merge too slowly. The warning indicates that the
driver should either slow down or stop at the median, or
accelerate ahead of the oncoming vehicle. The supplemental
video contains simulation of the scenario.

VI. CONCLUSION

We presented a complete, optimal longitudinal control
planner in the presence of moving obstacles that extends
previous work by allowing arbitrary polygonal models and
agent trajectories. We demonstrated that it can plan time-
optimal velocity profiles in cluttered scenarios and to detect
inevitable collision states in collision warning systems. Sim-
ulation tests suggest that the planning system is fast enough
for real-time navigation among many dynamic obstacles.

It is possible to further improve the speed of our planner,
e.g., using efficient geometric data structures for accelerating
PT obstacle construction or testing for collisions. We also
hope to relax some of the assumptions behind our planner,
such as allowing it to choose routes along a network of
possible paths, and handling more realistic vehicle dynamic
models and obstacle behavior models. Eventually, we intend
to test our algorithms in more realistic driving simulators
and/or real vehicles to better understand how they can be
employed to improve driving safety.

The supplemental video for this paper is available at:
http://www.indiana.edu/˜motion/iv2013/

REFERENCES

[1] “Roundabout: An informational guide,” 2000, in U.S. Department of
Transactions Federal Highway Administration Publication Number:
FHWA-RD-00-067.

[2] T. C. Ng, J. Ibanez-Guzman, J. Shen, Z. Gong, H. Wang, and
C. Cheng, “Vehicle following with obstacle avoidance capabilities in
natural environments,” in Proceedings IEEE International Conference
on Robotics and Automation, vol. 5, april 2004, pp. 4283 – 4288 Vol.5.

[3] A. Uno, T. Sakaguchi, and S. Tsugawa, “A merging control al-
gorithm based on inter-vehicle communication,” in Proceedings
IEEE/IEEJ/JSAI International Conference on Intelligent Transporta-
tion Systems, 1999, pp. 783–787.

[4] J. Johnson and K. Hauser, “Optimal acceleration-bounded trajectory
planning in dynamic environments along a specified path,” in Proceed-
ings IEEE International Conference on Robotics and Automation, St.
Paul, USA, May 2012.

[5] J. Hopcroft, D. Joseph, and S. Whitesides, “Movement problems for
2-dimensional linkages,” SIAM Journal Computing, vol. 13, no. 3,
pp. 610–629, Jul. 1984. [Online]. Available: http://dx.doi.org/10.1137/
0213038

[6] P. Fiorini and Z. Shillert, “Motion planning in dynamic environments
using velocity obstacles,” International Journal Robotics Research,
vol. 17, pp. 760–772, 1998.

[7] D. Wilkie, J. van den Berg, and D. Manocha, “Generalized velocity
obstacles,” in International Conference on Intelligent Robots and
Systems. IEEE/RSJ, 2009.

[8] R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock, “Kinodynamic motion
planning amidst moving obstacles,” in Proceedings IEEE International
Conference on Robotics and Automation, vol. 1, 2000, pp. 537–543.

[9] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[10] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata,
D. Moore, E. Olson, S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett,
A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone,
R. Galejs, S. Krishnamurthy, and J. Williams, “A perception-driven
autonomous urban vehicle,” Journal of Field Robotics, vol. 25, no. 10,
pp. 727–774, Oct. 2008.

[11] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[12] S. Kolski, Mobile Robots: Perception & Navigation. Pro Literatur
Verlag, 2007.

[13] T. Besselmann and M. Morari, “Hybrid Parameter-Varying MPC for
Autonomous Vehicle Steering,” European Journal of Control, vol. 14,
no. 5, pp. 418 – 431, 2008.

[14] P. Falcone, F. Borrelli, H. Tseng, J. Asgari, and D. Hrovat, “A hier-
archical model predictive control framework for autonomous ground
vehicles,” in American Control Conference, june 2008, pp. 3719 –
3724.

[15] C. Urmson, J. Anhalt, J. A. D. Bagnell, C. R. Baker , R. E. Bittner,
J. M. Dolan, D. Duggins, D. Ferguson, T. Galatali, H. Geyer, M. Git-
tleman, S. Harbaugh, M. Hebert, T. Howard, A. Kelly, D. Kohanbash,
M. Likhachev, N. Miller, K. Peterson, R. Rajkumar, P. Rybski,
B. Salesky, S. Scherer, Y.-W. Seo, R. Simmons, S. Singh, J. M.
Snider, A. T. Stentz, W. R. L. Whittaker, and J. Ziglar, “Tartan racing:
A multi-modal approach to the darpa urban challenge,” Robotics
Institute, http://archive.darpa.mil/grandchallenge/, Tech. Rep. CMU-
RI-TR-, April 2007.

[16] K. Kant and S. W. Zucker, “Toward efficient trajectory planning:
the path-velocity decomposition,” International Journal Robotics Re-
search, vol. 5, pp. 72–89, September 1986.

[17] T. Fraichard, “Dynamic trajectory planning with dynamic constraints:
A ‘state-time space’ approach,” in Proceedings IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, vol. 2, jul 1993,
pp. 1393–1400.

[18] C. Ó’Dúnlaing, “Motion planning with inertial constraints,” Algorith-
mica, vol. 2, no. 1–4, pp. 431–475, 1987.

611

