
Encroachment Detection with Monocular Vision for
Small, Low-cost, Compute-constrained Platforms

https://youtu.be/QDZJRk6OJZQ

Visualization:

Algorithm & Complexity:
Algorithm 1 For previous and current images It�1 and It ,
and scale set S, compute a scale pyramid from It�1 according
to S and match It to it using an L1 matrix norm µ(·). Let e
be a noise threshold.

1: procedure ENCROACHMENTDETECTION(It�1, It ,S,e)
2: Let Dbg µ(It�1, It) be baseline image change
3: if Dbg > e then

4: Image change too great detect reliably
5: return False
6: end if

7: for s 2 S do

8: Let Is be It�1 expanded about its center by s
9: Crop Is to the dimensions of It�1

10: DI µ(Is, It)
11: if DI < Dbg then

12: Is is “closer” to It than It�1, this indicates
13: that the scene is undergoing expansion
14: return True
15: end if

16: end for

17: No expansion detected
18: return False
19: end procedure

CPU time on a Raspberry Pi 3

It-1 
Previous Frame

Is1 
Scaled Frame 1

Is2 
Scaled Frame 2

It 
Current Frame

Encroachment is detected by
examining a low resolution
(160x120) fisheye video
sequence for evidence of scene
expansion. To the left, the smaller
norm at Is1 indicates expansion.

norm(It-1, It)

norm(Is1, It)

norm(Is2, It)

Line 2 adds an O(|I|) term, while the for loop at Line 7
adds O(2|S||I|) due to Lines 8 & 10. Together the total
complexity is O(2|S||I|+|I|). A nice property of this
approach is that the complexity is only sensitive to
the number of scale factors and the size of the
images. Therefore, in uses where both of these things
are fixed, the complexity is effectively constant. 
 
In practice, this algorithm can be implemented
efficiently. An unoptimized version written in python
and OpenCV with |S| = 2 and |I| = 160x120 runs
comfortably on a Raspberry Pi 3, as seen below.

Demo: A demonstration of the technique can be seen
online by scanning the QR code or visiting the
link below the QR code.

Jeffrey Kane Johnson

