Encroachment Detection with Monocular Vision for Small, Low-cost, Compute-constrained Platforms

Visualization:

I_{t-1} Previous Frame

I_{s1} Scaled Frame 1

I₅₂ Scaled Frame 2

I_t Current Frame

Encroachment is detected by examining a low resolution (160x120) fisheye video sequence for evidence of scene expansion. To the left, the smaller norm at I_{s1} indicates expansion.

Algorithm & Complexity:

Algorithm 1 For previous and current images I_{t-1} and I_t , and scale set *S*, compute a scale pyramid from I_{t-1} according to *S* and match I_t to it using an L_1 matrix norm $\mu(\cdot)$. Let ε be a noise threshold. 1: **procedure** ENCROACHMENTDETECTION $(I_{t-1}, I_t, S, \varepsilon)$ 2: Let $\Delta_{bra} \leftarrow \mu(I_{t-1}, I_t)$ be baseline image change

2.	Let $\Delta_{\text{bg}} \subset \mu(n-1,n)$ be baseline image enange
3:	if $\Delta_{\mathrm{bg}} > \varepsilon$ then
4:	Image change too great detect reliably
5:	return False
6:	end if
7:	for $s \in S$ do
8:	Let I_s be I_{t-1} expanded about its center by s
9:	Crop I_s to the dimensions of I_{t-1}
10:	$\Delta_I \leftarrow \mu(I_s, I_t)$
11:	if $\Delta_I < \Delta_{ m bg}$ then
12:	I_s is "closer" to I_t than I_{t-1} , this indicates
13:	that the scene is undergoing expansion
14:	return True
15:	end if
16:	end for
17:	No expansion detected
18:	return False
10	

19: end procedure

Line 2 adds an O(|/|) term, while the for loop at Line 7 adds O(2|S||/|) due to Lines 8 & 10. Together the total complexity is O(2|S||/|+|/|). A nice property of this approach is that the complexity is only sensitive to the number of scale factors and the size of the images. Therefore, in uses where both of these things are fixed, the complexity is effectively constant.

In practice, this algorithm can be implemented efficiently. An unoptimized version written in python and OpenCV with |S| = 2 and |/| = 160x120 runs comfortably on a Raspberry Pi 3, as seen below.

PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
9817 maeve-pi	20	0	213640	55136	26064 \$	50.8	6.2	2:45.57 python
9562 maeve-pi	20	0	95816	14852	12056 \$	6.9	1.7	0:24.37 republish
9816 maeve-pi	20	0	153108	10500	8868 5	1.7	1.2	0:05.91 raspicam_node
9819 maeve-pi	20	0	74152	6608	6004 5	1.0	0.7	0:03.91 relay
9966 maeve-pi	20	0	7200	2712	2180 F	1.0	0.3	0:02.48 top

CPU time on a Raspberry Pi 3

A demonstration of the technique can be seen online by scanning the QR code or visiting the link below the QR code.

https://youtu.be/QDZJRk6OJZQ

Jeffrey Kane Johnson

