Constant Space Complexity Environment Representation for Vision-based Navigation

Visualization:

Left: Perception and tracking in the image plane output multiple objects

Right: The potential field collapses these objects to a fixed-size representation

Algorithm & Complexity:

In Algorithm 1, all non-trivial operations are iterations over the width of the image plane. The operations on Lines 5 & 7 depend on the user defined parameters, but these are also bounded by image width. In Algorithm 2, Line 4 is a call to Algorithm 1, and Line 11 is assumed to be implemented with an $O(C)$ proportional law. Thus, the algorithm as a whole has constant complexity in space and time, with respect to the camera image space.

Algorithm 1

Given an image-space potential field F, compute the set of steering and acceleration commands that satisfy $\tau \leq T_s$, and $\tau > 0.5 \times \tau$, where $T_s > 0$ is some desired time headway, w_k and w_a are kernel widths for computing steering angle and acceleration maps, and $\tau > 0$ is a buffer.

1. procedure SafeControls($F, T_s, \tau, w_k, w_a, t$)
2. Let I_t be the list of image column indices
3. Let M_t map $i \in I_t$ to steering angles
4. Let h be the height (row count) of F
5. Let $M_t = \{ (\tau, \xi) \in M_t : \tau \geq T_s \}$
6. Let W be a centered $w_k \times h$ window in F
7. Let (x, τ_{min}) be the min. τ over W
8. Let $L \leftarrow \emptyset$ be a container for safe accelerations
9. do
10. if $M_t = \emptyset$ then
11. $M_t \leftarrow 0$, $L \leftarrow [-1, -1]$
12. else if $\tau_{min} > T_s$ then
13. $L \leftarrow [-1, 1]$
14. else
15. if $f(\tau, x) = 0$ then
16. $L \leftarrow [-1, -1]$
17. else
18. $L \leftarrow [-1, 0]$
19. end if
20. end if
21. return M_t, L
22. end procedure

Algorithm 2

For a desired pixel location (x_d, y_d) and setpoint speed \dot{x}_s, compute the Selective Determinism control that safely guides the agent A toward $(x_d, y_d).$ See Algorithm 1 for descriptions of the other parameters.

1. procedure ControlSafe(x_d, y_d, $F, T_s, \tau, t, w_k, w_a, t$)
2. Let θ_1, θ_2 be the steering angle and speed of A
3. Let θ_3 be the steering angle corresponding to t
4. Let $M_t, L \leftarrow SafeControls(F, T_s, \tau, w_k, w_a, t)$
5. Let $\dot{\theta} \leftarrow \emptyset$ contain the new steering angle
6. for $\theta \in M_t$ do
7. if $|\dot{\theta} - \theta| < |\theta_0 - \theta|$ then
8. $\dot{\theta} \leftarrow \theta$
9. end if
10. end for
11. Let $\tau \in L$ be chosen proportionally to $L_d - \dot{x}_s$
12. return θ, $\dot{\theta}$
13. end procedure

Video:

A visualization of ISP fields can be seen online by scanning the QR code or visiting the link below the QR code.

https://youtu.be/yHoR3ZpX1KE

Jeffrey Kane Johnson